Building mechanical systems exist to provide an environment that protects the building structure, creates safe and healthy surroundings for the occupants, and allows equipment that is housed within the facility to operate properly.
A key to proper application of heating, ventilating, and air conditioning (HVAC) systems is an understanding of the needs that the systems are designed to address. These needs include, for example, building material response to high humidity or freezing conditions, human thermal comfort, and the impact of environmental conditions on teaching or research equipment. It is also a requirement that the systems be socially responsible through proper application of energy conservation and pollution limitation strategies. This chapter will provide the background to ensure a good match between facility and societal needs and the operation and maintenance characteristics of HVAC systems.
This background will include a discussion of the impact of initial design decisions on operating and energy management strategies, along with descriptions of the various heating, cooling, and ventilation systems found in campus buildings; a discussion of their pros and cons; and consideration of appropriate maintenance and operations issues. It will also include descriptions of key components of HVAC systems—pumps and piping, fans and ducts, chillers, cooling towers, to name a few—and energy management control strategies as they relate to building HVAC systems as a whole. The chapter will discuss laboratory fume hood systems, including descriptions of various types of fume hoods, system design issues, pros and cons, control strategies, and maintenance and operations issues. It will also include a discussion of codes and standards where appropriate.