“WE INVEST IN EDUCATION, NOT BOTTLED WATER!”

Chuck Price • Director Student Union
University of Nevada, Reno

Going green and staying hydrated are major themes across campuses today. With the Brita® Hydration Station™ schools like the University of Nevada, Reno are helping to reduce bottled water waste while providing students a convenient hydration option.

Introducing the Brita® Hydration Station™, a touch-free, hygienic, water dispenser that allows students to enjoy the benefits of healthier†, great-tasting water without the waste and cost of bottled water.

Contact us to find out how affordable the Brita® Hydration Station™ can be.

The Brita® Hydration Station™... great-tasting water away-from-home.
Management Span of Control
Matt Adams, P.E.

For some topics in organizational design, there are no hard-and-fast rules. Nevertheless, the topic can still be of considerable importance. Span of control is one of those topics. As always, cost reduction is paramount in the facilities industry, and expanding spans of control offer—at least on paper—a potential reduction in cost. The actual organizational dynamic of span and its impact on the effectiveness of an organization, department, or service unit is equally important. Most of our peers have proven that the old, dated, organizational principles of facilities management have become less effective, and we must consider any and all new best practices. Given that within our peer group there are from one to five levels of management, the span of control parameter is a key variable. In fact, it is per se an indicator of sorts. That is to say that an effective and wide span of control is an indicator that other systems, organizational designs, processes, and training are in place that are also working.

Within our industry the dated general heuristic used to design span of control is a manager to subordinate ratio of from 1-5 up to 1-7. Quick research indicates that this heuristic predates much of the technological and management theory revolutions of the last 50 years. In fact, this rule was developed when nearly everyone prescribed to the Theory X management style, although it was not called that until recently. Theory X and Theory Y represent two sets of assumptions about employee nature and behavior that are relevant to the practice of management. Theory X represents a negative view of employee nature that assumes individuals generally dislike work, are irresponsible, and require close supervision to do their jobs. Theory Y denotes a positive view of employee nature that assumes individuals are generally industrious, creative, and able to assume responsibility and exercise reasonable self-control in their jobs. Clearly, an organization design based on the old Theory X mentality would vary greatly in its multiple occurrences of spans of control than one based on Theory Y.

DETERMINING THE SPAN OF CONTROL

In a typical facilities management department, there are a wide variety of professionals, trades, and clerical staff. The determination of span of control has a unique consideration for each, but all are based on modern best practices and the revolutions we have experienced. Generally, if workers are involved in work of a repetitive or routine nature, the supervisor will tend to require less application of control than if they perform work of greater significance or complexity.

In addition, spans may be limited by where people are located and by the problems of control and communication over distance. Also, a supervisor can exercise more effective control over a broader span in a stable situation than under dynamic conditions. Specifically, there was a study completed by A.T. Kearny in 1993 that concluded the following factors were most important in determining span of control.

1. The diversity and complexity of the work performed by the organization.
 • The more diverse and complex, the narrower the span of control.
2. The experience and quality level of the workforce
 • Experienced people, who were well selected and have been developed effectively, need less day-to-day supervision.
3. The extent to which coordination or interdependence is important between employees and groups.
 • The more important coordination/interdependence is, the narrower the span of control.
4. Amount of change taking place in the work environment.
 • A lot of change requires more attention to supervision and, therefore, narrower spans of control.
5. The extent to which coordinating mechanisms exist and are effective.
 • Effective mechanisms allow for increases in span of control.
 • The greater the geographic dispersion, the more time is needed to coordinate — thus requiring smaller spans of control.
7. The extent to which job design and tools allow direct performance feedback to the employee.
 • The more direct feedback from tools, the less reliant the employee is on the supervisor — thus allowing for larger spans of control.

For the sake of this discussion, we can discuss the trades and the span of control associated with the shops. From the previous list there are clearly factors that can expand the span of control from the previous standard ratios. However, some of these are actually tests of our organizations to gauge our utilization of all best practice tools at our disposal. One of the most important is item V. Included in this factor are many of the possible tools we can or should incorporate into our organization. Some of those include: formal work planning/loading processes, standardized quality control and continuous improvement systems, computerized maintenance management systems, dynamic work control centers, and zone deployment strategies.
For most of us, there is still much to be improved upon in the latter examples. So if the current ratio of supervisors to trade staff is 1 to 6 what could (or should) it be once these measures are implemented? Clearly the span of control can be widened considerably. In fact, it is our ubiquitous goal to increase planned work — versus unplanned work — and planned work requires less supervision. If an organization has improved on this metric, it has room to expand the span of control, as an example.

These tools will allow trades staff to work far more independently that 50 years ago. There is a high likelihood that many of our peers are already utilizing many of these tools effectively without having made the change of expanding spans of control. There is every reason for the span to trend “wider” within our industry.

SPEED OF TRUST
With respect to item II from the A.T. Kearny list, this is one area where our industry is still not progressing sufficiently. Still, using the trades staff example, many other maintenance industries (particularly in the private sector) benefit from significantly wider spans of control. This divergence starts from the beginning of the employment process in each industry. In other industries, trade staff are trained both technically and managerially to quickly become self-sufficient and operate independently. However, within our industry the opposite is true, and the negative — or the lack of “speed of trust” as Stephen M.R. Covey would say — costs the organization year after year.

Bringing all of this back full circle, one can ask how to make actual changes to the span of control ratios within the organization based on improvements achieved in the Kearny list (and other best practices). One simple method is to create two points of measure; best and worst. For worst, find the most narrow spans for each department over the last 25 years of your organization. If you are more aggressive, start with the current ratio.

Next, identify a best-of-class peer — not necessarily specifically in the public sector — and use those ratios as a target. Array all available organizational improvements that fall into the Kearny factor list, and give them the simple empirical measurement for each: 3 = target, 2 = threshold, and 1 = unacceptable. Apply a score to each now, and total up the score for each department. Plot the gap of current score to the ideal score over a similar plot of the increasing span of control and start to work on it year after year.

SOURCES
1. American Management Institute
2. A.T. Kearny

Matt Adams is president of FM², Atlanta, GA. He can be reached at matt@adamsfm2.com.
Rebuilt. Renewed. $71 million saved, too.

Hurricane Katrina forced Tulane University in New Orleans to close its doors and evacuate its students. The campus was under water, and if it did not re-open by the next semester, students might never return.

In less than six months, Johnson Controls helped rebuild the campus. This included providing emergency generators to restore power, and repairing and replacing the mechanical, electrical and plumbing systems in more than 40 buildings. When Tulane re-opened in January 2006, 87 percent of its students returned and thousands of local citizens went back to work.

With the campus restored, Tulane looked to renew and improve its facilities. Partnering with Johnson Controls, Tulane expanded and upgraded its central plant, and implemented energy management strategies across the campus. The result? Natural gas consumption has been reduced by 43 percent and carbon dioxide emissions decreased by 37 percent, annually. Better still, these upgrades are projected to save $71 million over 12 years—guaranteed. At the same time, Tulane has an enhanced learning and working environment for students, faculty and staff.

From educational institutions and hospitals, to government facilities and commercial buildings, Johnson Controls can make your buildings work for you more efficiently, sustainably and profitably. To find out how Johnson Controls can help you, visit MakeYourBuildingsWork.com.